
UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 1

Unbounded Pipelining in Dynamically

Reconfigurable Paxos Clusters
David C. Turner

Abstract—Consensus is an essential ingredient of a fault-
tolerant distributed system systems. When equipped with a
consensus algorithm a distributed system can act as a replicated
state machine (RSM), duplicating its state across a cluster
of redundant components to avoid the failure of any single
component leading to a system-wide failure. Paxos and Raft
are examples of algorithms for achieving distributed consensus.
Practical implementations of this kind of system must support
dynamic reconfiguration in order to be able to replace failed
components and perform other administrative tasks without
downtime. Paxos can achieve high performance by pipelining
(starting work on new requests before existing requests have com-
pleted) but typically bounds the length of the pipeline to ensure
consistency during reconfiguration. Raft also supports pipelining
and imposes no such bound on concurrent requests, preserving
consistency instead by restricting which reconfigurations may be
performed. This article shows how to extend Paxos to support
a more general form of reconfiguration which subsumes the
original bounded-pipeline approach as well as Raft-like fully-
concurrent reconfigurations and more besides.

Index Terms—Distributed algorithms, fault tolerance.

I. INTRODUCTION

RELIABLE distributed systems must be able to tolerate

a fault in any individual component without suffering

a system-wide failure, and typically achieve this by ensuring

that there is redundancy between the components. A replicated

state machine (RSM) is a style of fault-tolerant distributed

system in which a deterministic state machine is replicated

across a set of distinct nodes [1]. Being deterministic, the

nodes’ states remain synchronised if they all start in the same

state and perform the same sequence of transitions.

In order to arrange for each node to perform the same

transitions the system may achieve consensus on (or choose)

a sequence of values which describe the transitions. The

sequence must be consistent across the whole system even in

the presence of failures, and as long as there are not too many

failures it must remain possible to continue to make progress.

This is known as the distributed consensus problem, for which

a number of solutions are known to exist, including Paxos [2]

and Raft [3]. They typically run on a cluster of 2f +1 nodes,

where f is the number of faulty nodes that should be tolerated,

and consensus is achieved when a nonempty quorum of nodes

(e.g. at least f +1 of them) agree. The collection of quorums

in use is known as the configuration of the cluster.

Manuscript received 14 August 2017.
The author is with the Operations and Planning Systems division of

Tracsis plc, Leeds LS2 9DF, United Kingdom (email: dct25-a1vwi@mythic-
beasts.com)

c© 2016-7 Tracsis plc. This work is licensed under the Creative Commons
Attribution-ShareAlike 4.0 International License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-sa/4.0/ or send a letter
to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

It is normally necessary to be able to dynamically recon-

figure a cluster by adding or removing nodes while it is

running, in order that parts of the system can be repaired

or replaced without needing to take the whole system of-

fline. It is crucial that all participating nodes agree on the

cluster configuration, and this can be achieved by holding the

configuration within the RSM itself and using the consensus

algorithm to choose special reconfiguration commands when

a configuration change is desired.

In Paxos, each value is chosen using a conceptually-separate

instance of a two-phase consensus protocol known as Synod.

The full Paxos algorithm essentially runs an infinite sequence

of Synod instances in parallel, using uniformity of the in-

stances to do so without requiring infinite time or resources. It

starts by running phase I of all instances at once and then runs

phase II of each instance in turn to yield the desired sequence

of chosen values. It normally continues to run phase II for

extended periods of time, but will return to phase I if certain

nodes become faulty, or if messages between certain pairs of

nodes cease to be delivered reliably for a period, or if the

configuration changes. Raft’s pattern of execution is similar.

Both algorithms can achieve high throughput by allowing

for pipelining [4] whereby work may begin on an instance

even before all previous instances have fully completed. It is

a little tricky to ensure that this preserves consistency when

the configuration is held in the RSM itself because a value

may only be proposed once a quorum of nodes are ready for

it, but there may be a configuration change in the pipeline

which would change the quorums so as to make a proposal

invalid. If this case is not handled carefully then it may lead

to inconsistency. Paxos implementations typically solve this

problem by limiting the length of the pipeline to some α > 0
and requiring that a configuration change chosen at instance i

does not take effect until at least instance i+α, which means

that when a proposal is made there can be no as-yet-undecided

configuration change in the pipeline that could affect it. In

contrast, Raft imposes no limit on the number of concurrently-

running instances and instead restricts the reconfigurations

that may occur to only allow ones that cannot result in

inconsistency. An operator may then perform a sequence of

these restricted reconfigurations in order to achieve an arbitrary

reconfiguration.

In Paxos, the choice of the pipeline length parameter α

must be made carefully. If it is too small then the system may

suffer from poor performance due to lack of parallelism, but if

it is too large then configuration changes can be unreasonably

expensive to complete. It is more elegant [5] to limit the

pipeline length only during reconfiguration and to allow the

limit to vary while the system is running, but it would be

UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 2

better still if there were no need for a limit at all, even during

reconfiguration.

Here it is shown that the pipeline may indeed safely remain

unbounded even during a configuration change as long as the

reconfiguration satisfies certain conditions described in section

IV-A below. It is also shown that if these conditions are not

satisfied then a reconfiguration can still take place as long as

the pipeline length is temporarily limited.

The algorithm is presented here in its entirety for the sake

of consistency of notation and because it modifies the original

algorithm in ways that invalidate its consistency and liveness

proofs. We begin with a recap of the Synod algorithm in

section III and follow this by covering the full Paxos algorithm

in section IV, then in section V it is shown how this work

generalises and unifies the previously-known reconfiguration

processes supported in Paxos and Raft. Reworked proofs of

liveness and consistency are included in section IV-C and

appendices B and C and differences from the original are

highlighted throughout. The appendices are informal versions

of formal proofs performed using the Isabelle/HOL proof

assistant [6].

II. RELATED WORK

Lamport’s original presentation of Paxos [2] introduced the

bounded-pipeline technique for supporting reconfiguration in

which the pipeline length was defined to be 3. He later clarified

that the value ‘3’ was intended to stand for an arbitrary α > 0
in [7]. Later still Lamport and Massa [8] drew a distinction

between Static Paxos in which the configuration may not

change and Dynamic Paxos which supports reconfiguration

but requires a bounded pipeline. Dynamic Paxos was used as

a basis for Cheap Paxos in which the system automatically

reconfigures itself to achieve higher resilience to failures that

do not occur simultaneously, and which uses a heterogeneous

set of nodes to reduce the costs of operating a cluster.

Malkhi, Lamport and Zhou [9] proposed Stoppable Paxos,

an alternative method for reconfiguring clusters in which an

RSM may be stopped, reconfigured, and then restarted with

the new configuration. Stoppable Paxos improves on Dynamic

Paxos by removing the need for a pipeline limit when the

configuration is static and by allowing a different limit to be

selected for different reconfigurations.

Malkhi, Lamport and Zhou [10] then proposed Vertical

Paxos which keeps the RSM running throughout a reconfig-

uration, but requires a separate oracle to manage the con-

figuration. The Egalitarian Paxos of Moraru, Andersen and

Kaminsky [11] uses a similar reconfiguration scheme. The

problem with needing an external oracle is that for full

resilience it must be possible to reconfigure the oracle itself,

which requires another oracle and so on ad infinitum.

Chandra, Griesemer and Redstone [12] noted that the details

of reconfiguration are “relatively minor” but “subtle” and do

not give any details on the reconfiguration scheme used in

their Chubby system. It seems likely that they also used the

bounded-pipeline approach. In contrast, Birman, Malkhi and

van Renesse [13] noted that allowing for α > 1 may require

an unacceptably complex implementation, leading many real-

world systems to disable pipelining by setting α = 1, or even

to disable reconfiguration entirely.

Bortnikov et al. [14] implemented a reconfigurable RSM

using static RSMs which may pass responsibility to each

other in a manner that is similar to that of Stoppable Paxos.

They improve the performance of their system compared with

Stoppable Paxos by allowing each RSM to speculatively start

executing commands before the transfer of responsibility has

been fully agreed.

Ongaro and Ousterhout [3] developed the Raft protocol

which supports an unbounded pipeline throughout the recon-

figuration process without inconsistency by instead limiting

the reconfigurations that can be performed. They performed a

formal proof of the correctness of Raft without reconfiguration,

and an informal argument that consistency is preserved when

a single node is added or removed from the cluster. Raft uses

simple majorities of the set of nodes as its quorums.

Viewstamped Replication and Zab are two other well-known

consensus protocols. Viewstamped Replication supports recon-

figuration as described by Liskov and Cowling [15] in a similar

fashion to Vertical Paxos. Reed and Junqueira [16] initially

presented Zab without reconfiguration and this feature was

subsequently added by Shraer, Reed, Malkhi and Junqueira

[17], using a limited-pipeline approach much as in Dynamic

Paxos.

An interesting alternative approach to reconfiguration was

proposed by Jahl and Meling [18] which uses eventual con-

sistency rather than consensus to determine the configuration

of the system, and therefore supports reconfiguration as long

as it is still possible to communicate with a quorum of nodes

even if consensus cannot be achieved due to an inability to

elect a distinguished leader. In such a situation consensus-

based approaches such as the one presented here would fail

to make any further progress, whereas one based on eventual

consistency could be reconfigured into one in which a leader

may be elected and thus in which further progress can be

made.

III. THE SYNOD ALGORITHM

Synod [2] is an algorithm for achieving consensus on a

single value in a distributed system comprising a set of nodes

which can communicate by sending messages to each other.

The system is asynchronous but not Byzantine, in the sense

that messages may be delayed, reordered, duplicated and

dropped but not corrupted, and processes may run arbitrarily

slowly or even stop but may not deviate from their specifica-

tions.

Let B be a set of ballot identifiers with a wellfounded total

order ≺. Let A be a set of node identifiers and let V be the

set of values that may be chosen.

The Synod algorithm involves five kinds of message, in

two phases, as described below. Throughout, a ∈ A and

b, b′ ∈ B. Phase I starts with the broadcast of a prepare

message prepare(b) to which each node may respond with a

promise, either a free promise, written promised(a, b), or a

forced promise, written promised(a, b; b′), where a identifies

the responding node. Phase II starts with the broadcast of a

UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 3

Fig. 1. Invariants preserved by the Synod algorithm

S1) For all b1 ≻ b2 ∈ B there are sets of quorums QI(b1) and QII(b2) ⊆ PA such that if proposed(b1) and chosen(b2)
then QI(b1) ⌢ QII(b2).

S2) If promised(a, b) then ¬accepted(a, b′) for all b′ ≺ b.

S3) If promised(a, b; b′) then b′ ≺ b, accepted(a, b′), and b′ is the greatest such ballot in the sense that ¬accepted(a, b′′)
for all b′′ having b′ ≺ b′′ ≺ b.

S4) If proposed(b) then there is a quorum qI ∈ QI(b) such that for every node a ∈ qI either promised(a, b) or else there

exists a b′ such that promised(a, b; b′); if also P , {b′ | ∃a ∈ qI.promised(a, b; b′)} 6= ∅ then v(b) = v
(

max(P)
)

.

S5) If accepted(a, b) then proposed(b).
S6) If chosen(b) then there is a quorum qII ∈ QII(b) such that accepted(a, b) for every a ∈ qII.

proposal, written proposed(b), to which each node a may

respond with an acceptance, written accepted(a, b). Once

phase II is complete a success message, written chosen(b),
is broadcast. It is convenient also to use these symbols

as predicates indicating whether the corresponding messages

have been sent.

There is a function v : B → V assigning a value to each

ballot, discussed in more detail in section III-A below.

The system satisfies a set of invariants listed in fig. 1, from

which it follows that consistency is guaranteed in the sense that

if chosen(b) and chosen(b′) then v(b) = v(b′) as shown by

theorem 8 in appendix B.

Each node operates as a state machine whose transitions are

caused by the receipts of messages. Each phase is considered

to be complete for a particular ballot when appropriate mes-

sages have been received from sufficiently many nodes, where

“sufficiently many” is defined in terms of sets of quorums of

nodes in the system’s configuration.

In more detail, a node may emit proposed(b) when it

considers phase I to be complete at ballot b, which is when

promises for b have been received from a quorum of nodes,

and similarly may emit chosen(b) when it considers phase

II to be complete at b, which is when acceptances of b have

been received from a quorum of nodes.

The phase-I and phase-II quorums are defined so as to

always contain at least one node in common, but may vary

depending on the ballot b and the phase as discussed in section

III-B below. In particular, the quorums need not all mutually

intersect, as discovered independently by Howard, Malkhi and

Spiegelman [19].

A. Implementing the value function

In an implementation of a RSM, the values chosen represent

the transitions that the state machines must perform. It is pos-

sible that these values may be expensive to transfer between

nodes because they could carry a large quantity of data.

In the original presentation of the Synod algorithm, the

values of ballots are carried along with their identifiers in the

messages promised(a, b; b′, v(b′)), proposed(b, v(b)) and

chosen(b, v(b)). This means that, in a unicast network of

2f+1 nodes, each value is included in 2f messages (at least f

proposals and at least f success messages) even in the absence

of faults, which is twice as many as necessary. Furthermore, a

simple method for detecting faults is to insist that each node

sends at least one complete message within a certain period

of time, but this method is unsatisfactory if messages can be

unboundedly large.

Observation O4 in [8] notes that these values can be

replaced in some cases by hashes, but this idea can be taken

a step further and the values can be completely elided from

the messages that take part in the Synod protocol, allowing

considerably more freedom in the implementation of the

function v without sacrificing consistency.

By allowing the values to be communicated using a separate

mechanism from the consensus messages themselves it is

possible to seek optimisations that rely on the fact that the

values may be large but need not move quickly whereas the

consensus messages are small but must be transported with

low latency to ensure the system has good performance.

Although it appears that the function v is fixed, in practice

it is allowed to change as the system runs. Treating it as

fixed simplifies the consistency proof and highlights that its

values need not be included in all messages, but means that

the system cannot be shown to satisfy any useful liveness

properties. To recover liveness, note that if the invariants of

fig. 1 are satisfied with a value function v then they continue to

be satisfied if v is replaced by another value function v′ that

agrees with v on proposed ballots, i.e. where v(b) = v′(b)
if proposed(b) but not necessarily otherwise. Since only

owner(b) may propose b, if it has not yet itself proposed a

value for b it can deduce that ¬proposed(b) and therefore

freely modify v(b).
It is also important for liveness that the implementation

of v is resilient to the same failure modes as the rest of

the system. Since owner(b) is, in a sense, responsible for

the value of the ballot b, it is possible to think of v as an

insert-only set of pairs {〈b, v(b)〉 | proposed(b)} which is

an example of a convergent replicated data type [20] and can

therefore be implemented simply and robustly in a distributed

system without needing to rely on a consensus algorithm.

Indeed the original presentation can be seen as containing

such an implementation, where the inclusion of values in all

messages ensures convergence occurs as quickly as possible,

and replicating this set across all 2f + 1 nodes ensures v itself

may be resilient to as many as 2f failures. Cheap Paxos [8]

is cheaper partly because it replicates v across just the f + 1
primary processors, with the f auxiliary processors storing just

the hashes of values to ensure integrity.

It is also worth comparing this approach to that of Vertical

UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 4

Paxos [10] which takes great care to ensure that the system

state is completely transferred between nodes before they start

to participate fully in the cluster, with certain optimisations

in recognition of the fact that this state transfer could be

an expensive and time-consuming operation involving a very

large quantity of data. However if the implementation of v is

separated out then the quantity of data that must be transferred

as part of the consensus algorithm becomes small enough that

it needs no special treatment and a consensus-free technique

may be used to implement v more efficiently.

B. Per-phase quorums

The consistency property of the Synod algorithm relies on

the fact that the set of nodes involved in completing phase I

must always intersect the set of nodes involved in completing

phase II so that there is at least one node involved in both

phases. Write Q1 ⌢ Q2 iff every q1 ∈ Q1 and q2 ∈ Q2 have

q1 ∩ q2 6= ∅, and write QI(b) and QII(b) for the sets of phase-I

and phase-II quorums for ballot b respectively.

In the original presentation of the Synod algorithm any

(weighted) majority of the nodes could be used as a quorum,

so that QI(b1) = QII(b2) and hence QI(b1) ⌢ QII(b2) for all

b1 and b2 since all majorities intersect.

Theorem 8 shows that consistency can still be guaranteed

even if sometimes QI(b1) 6= QII(b2), as long as QI(b1) ⌢

QII(b2) when proposed(b1), chosen(b2) and b1 ≻ b2, as

described in invariant S1. This weaker invariant is the key to

allowing more general reconfigurations to take place safely as

described in section IV-A below.

IV. THE PAXOS ALGORITHM

Conceptually, Paxos is a sequence of distinct instances of

the Synod algorithm all running simultaneously. To achieve

this, the messages of the Synod algorithm above are in-

dexed with the instance number i ∈ N: promisedi(a, b),
promisedi(a, b; b

′), proposedi(b), acceptedi(a, b) and

choseni(b). There is another kind of message known as

a multi-promise, written promised≥i(a, b), which can be

thought of as standing for the infinite set of free promises

{promisedj(a, b) | j ≥ i}. Prepare messages prepare(b)
apply to all instances so are not indexed.

As in the Synod algorithm, phase I starts with a broadcast

of prepare(b) for some b to which each node a may respond

with a set of promises promisedi(a, b), promisedi(a, b; b
′)

and promised≥i(a, b) according to its past behaviour. Each

phase II instance i operates just as in the Synod algorithm,

starting with a broadcast of proposedi(b) to which each node

a may respond with an acceptance acceptedi(a, b) and once

acceptances have been received from a quorum of nodes it

follows that choseni(b) may be broadcast.

There is a function vi : B → V for each instance i giving

a value to each ballot, and theorem 10 shows that whenever

choseni(b) and choseni(b
′) it follows that vi(b) = vi(b

′).
The invariants listed in fig. 2 are roughly the same as

for many other presentations of Paxos with the addition of

constraints on the configurations associated with instances and

ballots as discussed below. Note that invariants P2, P3 and P4

limit the acceptances that can be sent as well as the promises,

so there is no need to define separate invariants concerning

the sending of acceptances.

A. Configuration changes

A fixed cluster configuration is a pair 〈QI, QII〉 of sets of

quorums satisfying QI ⌢ QII, where QI and QII are the sets

of quorums to use in phase I and phase II respectively.

Changes to the cluster configuration are modelled by a

sequence of configurations 〈QI
0, Q

II
0 〉, 〈Q

I
1, Q

II
1 〉, . . . that also

satisfy QI
e ⌢ QII

e+1 for all e. The integer subscript is called

the era of a configuration. Intuitively the cluster is “in era

e” while instances are being chosen using 〈QI
e, Q

II
e 〉. While a

change from era e to e+1 is in progress some instances may

use the interim configuration 〈QI
e, Q

II
e+1〉, and once the change

to era e+1 is complete instances will use 〈QI
e+1, Q

II
e+1〉. This

intuition is captured more precisely in section IV-D below, and

since QII
e ⌢ QI

e ⌢ QII
e+1 ⌢ QI

e+1 it follows that consistency

is preserved throughout by the observation of III-B above.

To achieve this there are also two nondecreasing integer-

valued functions, both written e(·), which respectively assign

an era e(i) to each instance i, and an era e(b) to each ballot

b. Intuitively e(b) records which quorums may be used in

phase I to decide that proposedi(b) can be sent, and e(i)
records which quorums may be used in phase II to decide

that choseni(b) can be sent. More precisely a node may emit

proposedi(b) only if it has received promises for ballot b in

instance i from a quorum of nodes in QI
e(b), which implies that

e(b) ≤ e(i), and similarly a node may emit choseni(b) only

if e(i) ≤ e(b) + 1 and it has received acceptedi(a, b) from a

quorum of nodes in QII
e(i). These extra conditions on the eras

of ballots and instances in messages ensure that if choseni(b)
then e(b) ≤ e(i) ≤ e(b) + 1 and hence QI

e(b) ⌢ QII
e(i) as

required to ensure consistency, as shown in lemma 9.

B. Dynamic configuration changes

As in Dynamic Paxos, the configurations

〈QI
0, Q

II
0 〉, 〈Q

I
1, Q

II
1 〉, . . . and era numbers e(i) are themselves

chosen by consensus. In contrast, era numbers e(b) for ballots

b are fixed in advance and not chosen by consensus.

In more detail, configurations are held within the RSM as

a finite sequence 〈QI
0, Q

II
0 〉, 〈Q

I
1, Q

II
1 〉, . . . , 〈Q

I
emax

, QII
emax

〉 and

the era numbers of instances are held similarly as a nonde-

creasing sequence e(0), e(1), . . . , e(imax). The transitions that

affect these sequences may append one or more elements, but

may not change any existing elements.

The sequences are always long enough to make progress,

in the sense that emax ≥ e(imax) and if chosenj(b) for all

j < i then imax ≥ i.

Note that a node may emit a promise for b at instance i

only if e(b) ≤ e(min(i, imax)). This allows nodes to make

promises for an instance i even if e(i) is not yet known, i.e. if

i > imax. Invariant P7 requires that i ≤ imax, and hence e(i)
is known, before choseni(b).

UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 5

Fig. 2. Invariants preserved by the Paxos algorithm

P1) There are configurations 〈QI
0, Q

II
0 〉, 〈Q

I
1, Q

II
1 〉, . . . where QII

e ⌢ QI
e ⌢ QII

e+1 for each e.

P2) If promised≥i(a, b) then e(b) ≤ e(min(i, imax)) and ¬acceptedj(a, b
′) for all j ≥ i and all b′ ≺ b.

P3) If promisedi(a, b) then e(b) ≤ e(min(i, imax)) and ¬acceptedi(a, b
′) for all b′ ≺ b.

P4) If promisedi(a, b; b
′) then e(b) ≤ e(min(i, imax)), b

′ ≺ b, acceptedi(a, b
′), and b′ is the greatest such ballot in the

sense that ¬acceptedi(a, b
′′) for all b′′ having b′ ≺ b′′ ≺ b.

P5) If proposedi(b) then there is a quorum q ∈ QI
e(b) such that for every a ∈ q one of the following holds:

• promised≥j(a, b) for some j ≤ i, or

• promisedi(a, b), or

• promisedi(a, b; b
′) for some b′.

Furthermore if P , {b′ | ∃a ∈ q.promisedi(a, b; b
′)} 6= ∅ then vi(b) = vi

(

max(P)
)

.

P6) If acceptedi(a, b) then proposedi(b).
P7) If choseni(b) then i ≤ imax, e(i) ≤ e(b) + 1, and there is a quorum q ∈ QII

e(i) with acceptedi(a, b) for every a ∈ q.

C. Liveness

To be useful, a consensus algorithm must not only guarantee

consistency but also ensure that it cannot “get stuck”, i.e. it

is always possible to make progress by eventually choosing

a value for each instance. It is known to be impossible to

guarantee liveness in a deterministic asynchronous system [21]

but as with earlier presentations of Paxos [7] here liveness can

be shown under the assumption that a distinguished node ℓ is

eventually selected as the only one that may emit prepare(b)
messages.

The original liveness proof then proceeded by having ℓ emit

prepare(b) for some b that is chosen to be large enough that a

quorum of nodes may respond with promises. In contrast, here

there is an upper bound on suitable ballots since a proposed

ballot must not belong to an era which is too large, because

if e(b) > e(i) then no promise for ballot b at instance i may

be made. Therefore here ℓ must be able to choose a ballot

that is large enough to be accepted but which still belongs to

the correct era, or, more precisely, for each ballot b, each era

e ≥ e(b) and each node a there must be a ballot b′ ≻ b having

e(b′) = e and owner(b′) = a.

This means that ballot numbers cannot be simple integers

because this would imply that there exist eras containing

only finitely many ballots. Instead an implementation could,

for example, let B = N × N × A ordered lexicographically,

where e(〈e, n, a〉) , e and owner(〈e, n, a〉) , a. This is

the approach used in Egalitarian Paxos [11] in which eras

are known as epochs but this terminology is avoided here

to prevent confusion with the epochs (views, terms, . . .) of

leader-election protocols (e.g. [22]) which track the current

leader rather than the current configuration.

With this in mind the proof of liveness runs much as in the

original presentation:

Theorem 1 (Liveness). Given that there is eventually a

nonfaulty distinguished node ℓ which is the only node that may

emit prepare messages, and sufficiently many other nonfaulty

nodes, and given that for every instance there is eventually at

least one value to propose, then eventually a value is chosen

for every instance.

Proof. The proof proceeds by induction over the instances,

so suppose that chosenj(bj) for all j < i and show that

eventually choseni(bi) as follows.

Firstly recall that the sequences of eras and configurations

are long enough, in the sense that i ≤ imax and e(imax) ≤
emax, so that the values of e(i), QI

e(i)−1, QI
e(i) and QII

e(i) are

known to ℓ.

The distinguished node ℓ first chooses a ballot bi having

e(bi) ∈ {e(i) − 1, e(i)} and owner(bi) = ℓ and such that

enough nodes can emit acceptedi(a, bi) without breaking

any of their previously-made promises. By invariants P2, P3

and P4, all promises for such a ballot b′ at instance i must

have e(b′) ≤ e(i) so that such a bi does exist.

If ℓ has not yet received enough promises for bi at instance i

then it broadcasts prepare(bi) and waits to receive promises

from a quorum of nodes in QI
e(bi)

.

Then, if ℓ has not yet emitted proposedi(bi) it selects

one of the values for instance i (which eventually exists), sets

vi(bi) as appropriate, broadcasts proposedi(bi), and waits

to receive acceptances in response. When acceptances have

been received from a quorum of nodes in QII
e(i) it follows that

choseni(bi) as required.

D. Fully concurrent configuration changes

The discussion so far shows that, like other Paxos variants,

this algorithm satisfies consistency and liveness properties.

The benefit of this scheme compared with other variants

is that, under normal running conditions, it is possible to

perform a reconfiguration without needing to impose a limit

on the number of concurrently-running instances. This section

describes the details of this procedure.

In normal running there is an instance i0 and a ballot

b with e(b) = e(i0) = e(imax) = emax and the distinguished

node ℓ = owner(b) has received a quorum of promises

qI ∈ QI
e(b) for ballot b for all instances i ≥ i0. In this state,

ℓ may emit proposedi(b) for any i ≥ i0 as long as vi(b) is

set appropriately. The node ℓ is known as the leader and its

proposals are normally accepted without undue delay by all

other nodes.

Suppose that, in normal running, an operator wishes

to change the cluster configuration to 〈QI
new, Q

II
new〉 where

QI
e(b) ⌢ QII

new ⌢ QI
new. First she appends 〈QI

new, Q
II
new〉 to

UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 6

the sequence of configurations, setting 〈QI
e(b)+1, Q

II
e(b)+1〉 =

〈QI
new, Q

II
new〉 and emax = e(b) + 1, then she picks a future

instance ic > imax at which the change should take effect and

appends values to the sequence of eras to set e(i) = e(i0) for

i0 ≤ i < ic and e(ic) = e(i0) + 1. Since e(ic) = e(i0) + 1 ≤
e(b)+1, values for instance ic and any future instances with the

same era may be proposed and chosen even though phase I has

not yet run for a ballot in this era, so this does not prevent any

further instances from running concurrently. There is therefore

no drawback to choosing as small a value for ic as possible,

so it makes sense to choose ic = imax + 1.

At this point, the system is no longer in normal running as

defined above because e(b) = e(imax)−1. If the operator were

to increase e(imax) any further then there would be an instance

i with e(i) > e(b) + 1 and hence ¬choseni(b). A value can

still eventually be chosen for instance i due to theorem 1,

but not before the leader has selected a new ballot b′ in an

appropriate era, completed phase I for b′, and then broadcast

new proposals for b′. These steps may cause the pipeline to

stall if not completed quickly enough.

The system must therefore be returned to normal running

before any further reconfiguration can occur. To do this, the

leader chooses a new ballot b′ having e(b′) = e(b) + 1
and owner(b′) = ℓ and runs phase I for b′ in a way that

does not prevent any progress in era e(b) while it has not

completed. This is possible if ℓ has a casting vote in the

sense that there are quorums of nonfailed nodes q ∈ QII
e(b)

and q′ ∈ QI
e(b)+1 having q ∩ q′ = {ℓ}. With a casting vote,

ℓ may broadcast prepare(b′) just to the nodes in q′ \ {ℓ}
without preventing further progress in era e(b) since the nodes

in q can continue to accept proposals in this era throughout.

When it has received promises from all the other nodes in q′ it

can send itself promised≥i′(ℓ, b
′) for some sufficiently large

i′, which completes phase I at b′ and restores the system to

normal running in era e(b′) = e(b) + 1. A message from a

node to itself does not incur any network delays so the last

step occurs essentially instantaneously.

If ℓ does not have a casting vote, but there is some other

node ℓ′ which does, then ℓ should first abdicate its leadership

to ℓ′ and then the new leader should perform the new phase I

as described above. If there is no node with a casting vote at

all then the broadcast of prepare(b′) may prevent progress

until phase I is complete at b′.

If any node fails during this process then it may be necessary

to retry some of the steps or possibly even elect a new leader.

Liveness and consistency continue to hold if nodes fail but

performance may be affected, for instance by meaning that ℓ

no longer has a casting vote. In general it is not possible to

prevent node failures from having a performance impact.

To give a concrete example of this process, fig. 3 shows the

flow of messages during a reconfiguration involving the nodes

a1 and a2 and the leader ℓ. The system starts in era e where

{ℓ, a1} ∈ QI
e and {ℓ, a2} ∈ QII

e , and moves to era e+1 where

{ℓ, a1} ∈ QI
e+1 and {ℓ, a2} ∈ QII

e+1 too. Because of these

quorums, the leader only needs a response from node a1 to

complete phase I, and similarly only needs a response from

node a2 to complete phase II and choose a value. Notice that

ℓa1 a2

prepare(b)

proposed
i
(b)

proposed
i+1(b)

proposed
i+2(b)

proposed
i+3(b)

prepare(b′)

era e

era e+ 1

proposed
i+4(b)

proposed
i+5(b)

proposed
i+6(b)

proposed
i+7(b)

proposed
i+8(b)

proposed
i+9(b)

proposed
i+10(b)

proposed
i+11(b)

proposed
i+12(b

′)

proposed
i+13(b

′)

Fig. 3. Message flow during a reconfiguration.

this means the leader has a casting vote. The messages sent

from ℓ to the other nodes are labelled on the diagram, but the

successful responses (promises and acceptances from a1 and

a2 respectively) are left unlabelled for clarity. Initially, imax =
i+ 3 and e(i) = e(i+ 1) = e(i+ 2) = e(i+ 3) = e = emax,

and all instances before i have already been chosen.

The leader starts by completing phase I at a sufficiently

large ballot b, where e(b) = e, which starts a period of normal

running in era e and means that ℓ may emit proposedj(b)
for any j ≥ i. It receives three client requests, causing it to

propose values for instances i, i + 1 and i + 2 in turn. On

the receipt of each proposal the node a2 responds with an

acceptance, which when ultimately received by ℓ allows it to

decide that each value is chosen because {ℓ, a2} ∈ QII
e .

A configuration change is proposed at instance i+3 which,

when chosen, appends the next configuration 〈QI
e+1, Q

II
e+1〉 to

the configuration sequence, sets e(i + 4) = e(i + 5) = . . . =
e+1, and increases emax and imax accordingly. This takes the

system out of normal running because now e(imax) = e+1 6=
e(b). In order to bring the system back into normal running,

the leader must choose a ballot b′ having e(b′) = emax and

complete a phase I at b′, so it sends prepare(b′) to a1.

While instance i+3 was being chosen, the leader continued

to service client requests by sending out proposedi+4(b),
proposedi+5(b) and proposedi+6(b), which a2 accepts in

UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 7

due course. Although these instances come after the config-

uration change at instance i + 3, when the leader receives

acceptedi+4(a2, b) it may still safely deduce choseni+4(b)
since e(i + 4) = e + 1 ≤ e(b) + 1 and {ℓ, a2} ∈ QII

e+1, and

similarly for instances i+5 and i+6. It is important to notice

that the leader is now using QII
e+1 and not QII

e to determine

when ballots are chosen. The horizontal dashed line shows the

point in time at which the leader moves from era e to era e+1.

While the leader is waiting for the response from a1, client

requests continue to arrive, yielding proposals for subsequent

instances i + 7, i + 8, Notice that the leader is still

using ballot b for these requests as it has not yet completed

phase I at b′, but that it is still safe to deduce choseni+7(b),
choseni+8(b), . . . because e(i + 7) = e(i + 8) = e(b) + 1.

Importantly, there is no limit to how many requests the leader

can handle in this way, so the system will continue to be able

to process client requests even if the phase I messages are

arbitrarily delayed.

At last the response from a1 is received just after the sending

of proposedi+11(b) and before a proposal has been made for

instance i + 12. The leader can then send itself the message

promised≥i+12(ℓ, b
′) which completes phase I at ballot b′

since {ℓ, a1} ∈ QI
e+1. This restores the system to normal

running, and allows ℓ to make proposals proposedj(b
′) for

all j ≥ i + 12. It is imporant to notice that the leader did

not need to predict how long it would take to complete phase

I at b′ in advance, nor how many requests it might have to

handle during this time, in order to ensure that it can continue

to process these requests without delay.

Fig. 4 shows an equivalent reconfiguration performed in a

Dynamic Paxos cluster with the pipeline length α = 2. As

there are frequently two proposals being processed concur-

rently it seems likely that better performance could be achieved

by selecting a higher value. A higher value still could have

avoided the pause between instances i+5 and i+6 caused by

the extra delay in completing phase I at ballot b′. On the other

hand if the pipeline is too long then configuration changes can

be expensive to complete. It is, in general, difficult to select

an appropriate value for α up-front as the best choice may

depend on changeable system conditions, and no matter what

value is selected it is possible that a configuration change may

cause a pause if a phase-I message is unexpectedly delayed or

a burst of client requests are received.

In contrast, fig. 5 shows an equivalent reconfiguration

performed in Stoppable Paxos. This variant of Paxos allows

for an unlimited number of proposals to run in parallel

within each configuration, and permits out-of-order execution,

so in this illustration the stopping command is proposed at

instance i+3 before proposals are made for the two preceding

instances. By selecting instance i+ 3 for the reconfiguration,

the operator is limiting the system to service at most two more

client requests before the reconfiguration completes. As in the

illustration of Dynamic Paxos above, the operator’s choice is

too conservative so the remaining two free instances are used

up before phase I is completed at ballot b′, which causes the

system to temporarily suspend its processing of client requests.

ℓa1 a2

prepare(b)

proposed
i
(b)

proposed
i+2(b)

proposed
i+4(b)

proposed
i+1(b)

proposed
i+3(b)

proposed
i+5(b)prepare(b′)

era e

era e+ 1

proposed
i+6(b

′)

proposed
i+7(b

′)

Fig. 4. Message flow for Dynamic Paxos with α = 2.

V. EXAMPLES

This section contains some examples of configuration

changes that satisfy the conditions described above. All the

configurations described here have equal sets of quorums in

phase I and phase II of each era, so for the sake of simplicity

throughout this section define Qe , QI
e = QII

e . Implementa-

tions can ensure Qe ⌢ Qe for each e by, for instance,

arranging for each quorum in Qe to comprise a majority subset

of some finite set of nodes. Slightly more generally, let a

weight function be a function w : A → N that only takes

finitely many nonzero values. This can be used to define a

configuration 〈M(w),M(w)〉 by weighted majority:

M(w) ,

{

q

∣

∣

∣

∣

∣

∑

a∈q

2w(a) >
∑

a∈A

w(a)

}

.

Corollary 5 in appendix A demonstrates the well-known result

that M(w) ⌢ M(w) for any weight function w. Indeed, if w

and w′ are weight functions that differ by a constant factor

in the sense that that there are positive integers k and k′ with

kw(a) = k′w′(a) for all a, then clearly M(w) = M(w′) and

hence M(w) ⌢ M(w′).
Raft’s quorums are simple unweighted majorities of a finite

set of nodes, which can be emulated with weight functions

that only take values in {0, 1}. It only supports adding or

UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 8

ℓa1 a2

prepare(b)

proposed
i
(b)

proposed
i+1(b)

proposed
i+2(b)

proposed
i+3(b)

era e

era e+ 1

prepare(b′)

proposed
i+4(b

′)

proposed
i+5(b

′)

proposed
i+6(b

′)

Fig. 5. Message flow for Stoppable Paxos.

removing a single node from this set which amounts to

changing the weight of a single node by ±1. For instance,

if A = {a1, a2, . . .} then define weight functions

w1...n(a) ,

{

1 ifa ∈ {a1, . . . , an}

0 otherwise

and observe that M(w1...3) ⌢ M(w1...4) and

M(w1...4) ⌢ M(w1...5) but M(w1...3) 6⌢ M(w1...5) because

{a1, a2} ∈ M(w1...3) and {a3, a4, a5} ∈ M(w1...5) do

not intersect. This justifies the restriction against adding or

removing more than one node at once.

In fact there is no need to restrict attention just to weight

functions taking values in {0, 1} as shown by lemma 3 which

is reminiscent of the amoeba analogy in [8]: any two integer-

valued weight functions whose total absolute difference is at

most one can be used to define consecutive configurations.

This extra generality is important for deployments where nodes

may share infrastructure (e.g. power distribution or network

connectivity) because such nodes may suffer correlated fail-

ures, and reducing this correlation by adding more independent

infrastructure may be costly. In more detail, a naı̈ve approach

to swapping a node aold for a replacement anew in a three-

node cluster using unweighted majorities would be to perform

the configuration changes given by this sequence of weight

functions starting at era e:

node aold anew a1 a2
we 1 0 1 1

we+1 1 1 1 1
we+2 0 1 1 1

However to be resilient to infrastructure failures this requires

all four nodes and their underlying infrastructures to be

completely independent since a correlated failure of any two

nodes would prevent further progress. It also has no node with

a casting vote in era e + 1. On the other hand the following

sequence achieves the same overall change but allows aold and

anew to share infrastructure without extra risk, and both a1 and

a2 have casting votes throughout:

node aold anew a1 a2
we 1 0 1 1

we+1 2 0 2 2
we+2 2 1 2 2
we+3 1 1 2 2
we+4 0 1 2 2
we+5 0 2 2 2
we+6 0 1 1 1

This is important as in many operating environments it may be

too expensive or complicated to arrange for four independent

infrastructures particularly if the fourth is only required to

ensure consistency in relatively rare periods of maintenance.

For instance at time of writing only one Amazon Web Services

region (us-east-1) has four independent zones, whereas

four of them have three: ap-southeast-2, eu-west-1,

sa-east-1 and us-west-2. Similarly, only one Google

Cloud Platform region (us-central1) has four zones and

all the others have three zones.

Early versions of Raft supported more general reconfigu-

rations using a technique known as joint configurations. To

change from configuration Qe to an unrelated configuration

Q′ (i.e. Qe 6⌢ Q′ ⌢ Q′) it is possible to set Qe+2 = Q′ and

set Qe+1 to be the joint configuration of Qe and Q′:

Qe+1 = {q ∪ q′ | q ∈ Qe, q
′ ∈ Q′}

as this satisfies that Qe ⌢ Qe+1 ⌢ Qe+1 ⌢ Q′.

If w(a) = 0 for all a then w is said to be weightless

and M(w) = ∅. Clearly if there is an instance i such that

Qe(i) = ∅ then no value can ever be chosen for i. On the other

hand Q ⌢ ∅ for all Q so changing to or from a weightless

configuration is always permitted.

There is no requirement for the eras of consecutive instances

to differ by at most one so an era may be skipped at instance

i+ 1 by setting e(i+ 1) = e(i) + 2. This recovers the ability

to perform arbitrary configuration changes in a single step as

in Stoppable Paxos. In more detail, if the system is currently

using configuration Qe and an operator wishes to change to

an unrelated configuration Q′ then she can set Qe+2 = Q′

and pick an appropriate Qe+1 (such as ∅) which satisfies that

Qe ⌢ Qe+1 ⌢ Qe+1 ⌢ Q′. However, re-running phase I can

only be delayed as described in section IV-D above if the era

increases by 1 and in this situation the era increases by 2, so

a new phase I must be completed before phase II of any new

UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 9

instances can be started. To prevent this causing the pipeline

to stall, the operator chooses a sufficiently large α > 0 and

sets e(i + α) = e(i) + 2 and e(j) = e(i) for i < j ≤ i + α,

effectively delaying the configuration change for α instances

in the hope that this is long enough to have completed the

new phase I. The pattern of communication in this situation

is very similar to that shown in fig. 5 where α was chosen to

be 3.

VI. CONCLUSION

The approach described here improves on Dynamic Paxos

[8] by supporting changing the pipeline length parameter

α and running with an unlimited-length pipeline while a

configuration change is not in progress. In that sense, it can

be compared to that of Stoppable Paxos [9] which allows for

an unlimited number of proposals to run in parallel within

each configuration, but requires a temporary arbitrary limit on

concurrency while a reconfiguration takes place.

In both Dynamic and Stoppable Paxos, if the selected

limit is either too small or too large then it may affect the

system’s performance, and the best choice of limit depends

on a prediction of the system’s future performance. The

approach described here avoids the need to make any such

prediction or select any such limit and responds to changing

system conditions without needing further tuning. Once a

reconfiguration is chosen, it can complete after a single round-

trip to a quorum of nodes and the system can continue to serve

all clients while this round-trip is in progress, no matter how

long it takes.

This is achieved by using Raft-style reconfigurations [3]

which can be performed with an unlimited pipeline throughout.

Unlike in Raft, here a configuration change only takes effect

once it is chosen, which avoids the need to back-track to

an earlier state if a leader fails during reconfiguration. It

generalises the simple majorities used in Raft to integer-

weighted majorities which can reduce the costs of dealing with

correlated failures during maintenance.

It achieves equivalent goals to those of Vertical Paxos [10]

except that here there is no requirement for a separate oracle

to manage the configuration of the system.

It is also noted that there is no need for every message to

include the corresponding value, or even a hash of the value,

which may allow for even cheaper implementations of Cheap

Paxos [8] and can simplify the transfer of state [10] required

when new nodes are commissioned.

APPENDIX A

Lemma 2. If w,w′ : A → N are weight functions and k, k′

are positive integers such that
∑

a∈A
|k′w′(a) − kw(a)| ≤ 1

then M(w) ⌢ M(w′).

Proof. Since kw(a) and k′w′(a) are integers for all a, there

must be a node a0 such that kw(a) = k′w′(a) for all a 6= a0.

Let q ∈ M(w) and q′ ∈ M(w′). By the definition of M ,

and since w and w′ take only integer values,
∑

a∈q 2w(a) ≥
∑

a∈A
w(a) + 1 and

∑

a∈q′ 2w
′(a) ≥

∑

a∈A
w′(a) + 1.

Let dA , k′w′(a0) − kw(a0) so that
∑

a∈A
k′w′(a) =

∑

a∈A
kw(a) + dA and |dA| ≤ 1. Also let

dq′ ,

{

dA a0 ∈ q′

0 otherwise,

so that
∑

a∈q′ k
′w′(a) =

∑

a∈q′ kw(a) + dq′ . Then

∑

a∈A

2kw(a) + dA + k + k′

= k

(

∑

a∈A

w(a) + 1

)

+ k′

(

∑

a∈A

w′(a) + 1

)

≤
∑

a∈q

2kw(a) +
∑

a∈q′

2k′w′(a)

=
∑

a∈q

2kw(a) +
∑

a∈q′

2kw(a) + 2dq′

=
∑

a∈q∪q′

2kw(a) +
∑

a∈q∩q′

2kw(a) + 2dq′

≤
∑

a∈A

2kw(a) +
∑

a∈q∩q′

2kw(a) + 2dq′

so that
∑

a∈q∩q′ 2kw(a) ≥ dA+k+k′−2dq′ = k+k′±dA ≥ 1
and hence q ∩ q′ 6= ∅ as desired.

Lemma 3. If w,w′ : A → N are weight functions such that
∑

a∈A
|w′(a)− w(a)| ≤ 1 then M(w) ⌢ M(w′).

Proof. By lemma 2 with k = k′ = 1.

Lemma 4. If w,w′ : A → N are weight functions and k, k′

are positive integers such that k′w′(a) = kw(a) for all a then

M(w) ⌢ M(w′).

Proof. By lemma 2, since
∑

a∈A
|k′w′(a)− kw(a)| = 0.

Corollary 5. If w : A → N is a weight function then

M(w) ⌢ M(w).

Proof. By lemma 4 with w′ = w and k′ = k.

APPENDIX B

CONSISTENCY OF THE SYNOD ALGORITHM

Lemma 6. If accepted(a, b2), promised(a, b1; b3) and

b2 ≺ b1 then b2 � b3.

Proof. From invariant S3 it follows that b3 is the largest ballot

such that b3 ≺ b1 and accepted(a, b3), but b2 is also such a

ballot and therefore b2 � b3 as required.

Lemma 7. If chosen(b2), proposed(b1) and b2 ≺ b1 then

v(b1) = v(b2).

Proof. Suppose for a contradiction that v(b1) 6= v(b2) and

since ≺ is wellfounded suppose without loss of generality that

b1 is the minimal such ballot. Since chosen(b2) by invariant

S6 there is a quorum qII ∈ QII(b2) such that accepted(a, b2)
for every a ∈ qII. By invariant S2 it cannot be that

promised(a, b1) for any a ∈ qII. Also since proposed(b1)
by invariant S4 there is a quorum qI ∈ QI(b1) such that either

promised(a, b1) or ∃b′.promised(a, b1; b
′) for all a ∈ qI.

Let P , {b′ | ∃a ∈ qI.promised(a, b1; b
′)}. By invariant S1,

UNBOUNDED PIPELINING IN DYNAMICALLY RECONFIGURABLE PAXOS CLUSTERS — 1A9DBA37 10

QI(b1) ⌢ QII(b2) and hence qI∩qII 6= ∅ so it follows that P 6=
∅, which means that v(b1) = v(max(P)) by invariant S4.

Let amax ∈ qI be such that promised(amax, b1; max(P)).
By invariant S3 it follows that max(P) ≺ b1 and also that

accepted(amax,max(P)) and hence proposed(max(P))
by invariant S5. Furthermore by lemma 6 it follows that

b2 � max(P) and since b1 was assumed to be the smallest

counterexample it must be that v(max(P)) = v(b2). Hence

v(b1) = v(b2) which is a contradiction as required.

Theorem 8. If chosen(b1) and chosen(b2) then v(b1) =
v(b2).

Proof. Without loss of generality assume that b2 ≺ b1. By

invariant S6 there is a quorum q ∈ QII(b1) such that

accepted(a, b1) for every node a ∈ q and therefore

proposed(b1) by invariant S5. Therefore by lemma 7 it

follows that v(b1) = v(b2) as required.

APPENDIX C

CONSISTENCY OF THE PAXOS ALGORITHM

Lemma 9. For b1 ≻ b2 ∈ B, if proposedi(b1) and

choseni(b2) then QI
e(b1)

⌢ QII
e(i).

Proof. proposedi(b1) implies that promised≥i′(a, b1) or

promisedi′(a, b1) or promisedi′(a, b1; b
′) for some node

a and some i′ ≤ i with e(b1) ≤ e(min(i′, imax)). There-

fore e(b1) ≤ e(i) since e is nondecreasing. It follows that

e(i) ≤ e(b2) + 1 ≤ e(b1) + 1 ≤ e(i) + 1 since choseni(b2)
so that e(i) ∈ {e(b1), e(b1)+1} and hence QI

e(b1)
⌢ QII

e(i) by

invariant P1.

Theorem 10. If choseni(b1) and choseni(b2) then

vi(b1) = vi(b2).

Proof. If choseni(b1) then the Paxos invariants imply the

Synod invariants for instance i. In more detail, let

QI(b) , QI
e(b)

QII(b) , QII
e(i)

promised(a, b) , promisedi(a, b)
∨ ∃i′ ≤ i.promised≥i′(a, b)

promised(a, b; b′) , promisedi(a, b; b
′)

proposed(b) , proposedi(b)

accepted(a, b) , acceptedi(a, b)

chosen(b) , choseni(b) and

v(b) , vi(b).

Synod’s invariant S1 follows from lemma 9 and the remaining

invariants are simple to show so by theorem 8 it follows that

vi(b1) = vi(b2) as required.

ACKNOWLEDGMENT

The author would like to thank Leslie Lamport, Dahlia

Malkhi and Leander Nikolaus Jehl for their encouragement

and comments on earlier drafts of this paper. The author is

also very grateful to Tracsis plc for supporting this work.

REFERENCES

[1] B. W. Lampson, “How to build a highly available system using consen-
sus,” in Proceedings of the 10th International Workshop on Distributed

Algorithms, ser. WDAG ’96. London, UK, UK: Springer-Verlag, 1996,
pp. 1–17.

[2] L. Lamport, “The part-time parliament,” ACM TRANSACTIONS ON

COMPUTER SYSTEMS, vol. 16, no. 2, pp. 133–169, 1998.
[3] D. Ongaro and J. Ousterhout, “In search of an understandable consensus

algorithm,” in Proceedings of the 2014 USENIX Conference on USENIX

Annual Technical Conference, ser. USENIX ATC’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 305–320.

[4] J. R. Lorch, A. Adya, W. J. Bolosky, R. Chaiken, J. R. Douceur, and
J. Howell, “The smart way to migrate replicated stateful services,”
in Proceedings of the 2006 EuroSys Conference. Leuven, Belgium:
Association for Computing Machinery, Inc., April 2006, p. 103115.

[5] L. Lamport, D. Malkhi, and L. Zhou, “Reconfiguring a state machine,”
Microsoft Research, Tech. Rep. MSR-TR-2008-198, February 2008.

[6] T. Nipkow, M. Wenzel, and L. C. Paulson, Isabelle/HOL: A Proof

Assistant for Higher-order Logic. Berlin, Heidelberg: Springer-Verlag,
2002.

[7] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
pp. 18–25, 2001.

[8] L. Lamport and M. Massa, “Cheap paxos,” 2004.
[9] L. Lamport, D. Malkhi, and L. Zhou, “Stoppable paxos,” Microsoft

Research, Tech. Rep. MSR-TR-2008-197, April 2008.
[10] ——, “Vertical paxos and primary-backup replication,” in Proceedings

of the 28th ACM Symposium on Principles of Distributed Computing,
ser. PODC ’09. New York, NY, USA: ACM, 2009, pp. 312–313.

[11] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles, ser. SOSP ’13. New York,
NY, USA: ACM, 2013, pp. 358–372.

[12] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in Proceedings of the Twenty-sixth Annual

ACM Symposium on Principles of Distributed Computing, ser. PODC
’07. New York, NY, USA: ACM, 2007, pp. 398–407.

[13] K. Birman, D. Malkhi, and R. van Renesse, “Virtually synchronous
methodology for dynamic service replication,” Tech. Rep., 2010.

[14] V. Bortnikov, G. Chockler, A. Roytman, S. Shachor, I. Shnayderman,
and D. Perelman, Reconfigurable state machine replication from non-

reconfigurable building blocks. ACM, 2012, pp. 93–94.
[15] B. Liskov and J. Cowling, “Viewstamped replication revisited,” MIT,

Tech. Rep. MIT-CSAIL-TR-2012-021, Jul. 2012.
[16] B. Reed and F. P. Junqueira, “A simple totally ordered broadcast pro-

tocol,” in Proceedings of the 2Nd Workshop on Large-Scale Distributed

Systems and Middleware, ser. LADIS ’08. New York, NY, USA: ACM,
2008, pp. 2:1–2:6.

[17] A. Shraer, B. Reed, D. Malkhi, and F. P. Junqueira, “Dynamic recon-
figuration of primary/backup clusters,” in Presented as part of the 2012

USENIX Annual Technical Conference (USENIX ATC 12). Boston,
MA: USENIX, 2012, pp. 425–437.

[18] L. Jehl and H. Meling, Distributed Computing and Networking: 15th

International Conference, ICDCN 2014, Coimbatore, India, January 4-

7, 2014. Proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg,
2014, ch. Asynchronous Reconfiguration for Paxos State Machines, pp.
119–133.

[19] H. Howard, D. Malkhi, and A. Spiegelman, “Flexible Paxos: Quorum
intersection revisited,” ArXiv e-prints, Aug. 2016.

[20] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski, Stabilization,

Safety, and Security of Distributed Systems: 13th International Sympo-

sium, SSS 2011, Grenoble, France, October 10-12, 2011. Proceedings.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, ch. Conflict-Free
Replicated Data Types, pp. 386–400.

[21] M. J. Fischer, N. A. Lynch, and M. S. Paterson, “Impossibility of
distributed consensus with one faulty process,” J. ACM, vol. 32, no. 2,
pp. 374–382, Apr. 1985.

[22] D. Malkhi, F. Oprea, and L. Zhou, “Omega meets paxos: Leader election
and stability without eventual timely links,” in 19th Intl. Symposium

on Distributed Computing (DISC 05), no. MSR-TR-2005-93. Cra-
cow, Poland: European Association for Theoretical Computer Science,
September 2005, p. 25.

